
Jorge Cardoso (jccardoso@porto.ucp.pt) and Nuno Rodrigues (nrodrigues@porto.ucp.pt)

Research Center for Science and Technology in Art (CITAR), Universidade Católica Portuguesa –
Campus da Foz, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal

• Autor apresentador: Jorge Cardoso

• Autor para contacto: Jorge Cardoso

• Palavras-chave: “Interaction System”, “Digital Art”, “Bluetooth”, “Interactive Installation”

DiABlu: Digital Arts’ Bluetooth
Jorge Cardoso (jccardoso@porto.ucp.pt) and Nuno Rodrigues (nrodrigues@porto.ucp.pt)

Research Center for Science and Technology in Art (CITAR), Universidade Católica Portuguesa –
Campus da Foz, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal

Abstract – Digital art installations can often gain from the

capability of detecting the presence of people observing
them. With this information, the artists can enhance the
experience of who interacts with their work. While this
detection can be made by means of web cameras or sensors,
these systems are generally difficult to implement for people
with a low knowledge of programming. We propose a system
that uses bluetooth to do this detection and allows easy
integration with applications often used by digital artists.
The system also allows users to interact with the installation
using their mobile devices. It's intended to be used in art
installations by digital artists who wish to give their audience
a new way to interact with their pieces.

Index Terms – Interaction System, Digital Art, Bluetooth,
Interactive Installation.

I. INTRODUCTION

Digital art installations can often gain from the
capability of detecting the presence of people observing
the installation. With this information, artists can enhance
the experience of who interacts with their work.
Sometimes, detecting the presence of people is even the
only way to implement the conceptual meaning of the
work of art.

There are many ways to detect the presence of people
near an installation. Web cameras with more or less
advanced detection techniques can be used, or a wide
range of general purpose sensors combined with sensor
control interfaces like the iCubeX system [1].
Implementing these solutions, however, is a distraction to
the artist from more important aspects of the installation.
Often, these systems mean building special structures to
position web cameras and sensors and have to be fine
tuned to every location.

Sometimes, however, it’s not really necessary to have a
very precise detection system, i.e., it doesn’t matter if the
system only detects part of the audience. In some cases,
the artist is only concerned with providing a dynamic
piece that reacts to the presence of people in a room, but
it’s not important that the piece recognizes exactly how
many people there are.

In this paper, we propose a system for detecting the
presence of people by detecting the presence of Bluetooth
enabled devices. Our system allows easy integration with

applications used for building digital art installations,
namely by our students at the School of Arts of the
Portuguese Catholic University. The system is called
“Digital Arts' Bluetooth – DiABlu”1.

Our goal was to develop a system that was easy to use
and integrate with other applications, like Flash [2],
Processing [3], Max/MSP [4], Pure Data [5], etc, by using
the widely used Open Sound Control [6] (OSC) protocol.

Besides allowing the detection of bluetooth devices, the
DiABlu System also allows users to interact, using their
mobile devices, with the installation.

Throughout this paper we use the names of the main
components of the DiABlu system, with the following
meaning:

Target Application: The application that is developed
by the final user and that needs information about
bluetooth devices. This application can be developed in
Max/MSP, Pure Data, Processing, Flash, or any other
environment that supports the Open Sound Control (OSC)
protocol.

DiABlu Server: The base DiABlu application that
connects to the Target Application and provides
information about the nearby Bluetooth devices.

DiABlu Client: Mobile application that connects to the
DiABlu Server and allows the user to input keystrokes and
text messages that will be delivered to the Target
Application.

The remainder of this paper is organized as follows:
section II presents the goals we had in mind when
designing the DiABlu System; section III introduces some
basic Bluetooth concepts for better understanding the rest
of the paper; section IV describes the DiABlu Server;
section V describes the DiABlu Client application; section
VI describes some types of Target Applications and gives
some examples of applications built to use our system;
section VII explains the OSC messages used by our
system, in detail; section VIII presents the implementation
status of the system and section IX concludes.

1 More information about this project can be obtained at
http://soundserver.porto.ucp.pt/diablu

II. DESIGNING THE DIABLU SYSTEM

A. Requirements/Goals
The DiABlu System started out from the need to

incorporate interaction in installations programmed in
Max/MSP and Processing, via a mobile phone. Basically,
we had two requirements: to be able to detect the presence
of mobile phones and to be able to receive input from
those mobile phones. We also wanted to be able to
simulate the presence of mobile phones, so that testing the
target application would be easier.

One of the main goals was to design a system that was
easy to use by our students and by digital artists, in
general. This meant that the system should be easily used
with applications like Max/MSP, Pure Data, Eyesweb,
Flash and Processing and that it should run in the Mac OS
X and Windows platforms, since these are the most used
applications and platforms in our school.

C. High-Level Architecture
The high-level architecture of the DiABlu system is
presented in Figure 1.

Figure 1 – High-level architecture of the DiABlu system

The shaded boxes represent the software components of
the DiABlu System.

III. BASIC BLUETOOTH CONCEPTS

Bluetooth is a wireless communication protocol
intended to connect low power devices like portable
digital assistants (PDA) and mobile phones. Bluetooth
transmissions are omnidirectional, i.e., devices don’t need
an unobstructed line of sight to communicate, and have a
nominal range of about 10 meters (class 3 devices).

Bluetooth devices are divided in three power classes.
Class 1 is intended for larger devices, usually with AC
power. Class 2 and 3 are intended for small, battery

powered devices. Table 1 lists the power rating and
communications range of each power class. Mobile
phones are usually class 3 devices.

Class Power Rating Range

Class 1 100 mW 100 meters
Class 2 2.5 mW 20 meters
Class 3 1 mW 10 meters

Table 1 – Bluetooth device power classes

Bluetooth devices are identified by their Universally

Unique Identifiers (UUID) which are unique numbers
associated with the Bluetooth hardware of the device.
Besides having this identifier, Bluetooth devices may have
(and generally do) “friendly names”, which are human
readable names, normally configurable by the user.

When two Bluetooth devices communicate, three steps
have to be accomplished: device discovery, service
discovery and communication.

Before communication can occur, a device needs to find
which devices are nearby. This process is called device
discovery. In order to be discovered, devices need to be
visible to other devices. This is usually user configurable,
i.e., users can allow their devices to be discoverable or
not.

After a device has found another to which it wishes to
communicate with, it needs to know which services are
offered by that device. There are several standard services
like DialupNetworking, OBEXFileTransfer, Fax,
BasicPrinting, etc. Applications can also define their own
services. Services are identified by their UUID.

After finding a suitable service, communication can
begin.

Besides the power classes, Bluetooth also defines types
of devices (class of device, in the Bluetooth specification)
which categorizes devices in classes like Computer,
Phone, Network Access Point, Computer Peripheral, etc.
Each class has a set of sub-classes. For example, the
Computer class can be divided in Desktop, Server, Laptop,
PDA, etc.

IV. DIABLU SERVER

The DiABlu Server is the core of the DiABlu system.
This application is responsible for detecting nearby
bluetooth devices and informing the Target Application of
the number of present devices and their UUIDs and
names.

Basically, the DiABlu Server performs the following
actions:
• Scan the environment for the presence of Bluetooth

devices.

Bluetooth
Device

DiABlu
Server
(J2SE)

Target
Application
(Max/MSP,
Pure Data,
Processing,

Flash)

DiABlu
Client
(J2ME)

Detection

Messages

Messages
(OSC)

• Inform the Target Application of the nearby
devices.

• Accepts Bluetooth connections from devices and
receives data (keystrokes and text messages)

• Inform the Target Application of the data received.
All communication between the DiABlu Server and the

Target Application is made using the Open Sound Control
[6] (OSC) protocol.

Figure 2 – Screenshot of the DiABlu Server interface

A. OSC Messages

The OSC messages sent by the DiABlu Server are
described in more detail in section VII.

B. Simulator

An important aspect of the DiABlu System is the ability
to simulate the presence and the input from Bluetooth
devices.

Developing and testing applications that use information
about the presence Bluetooth devices can be a difficult
task. Reproducing the dynamics of the final environment
in which devices enter leave is very difficult to accomplish
with real devices – because of the number of devices
needed and because of the rate of visibility change.

In order to facilitate testing and development, the
DiABlu Server application also incorporates a device
simulator. The application allows the user to simulate the
entering and exiting of Bluetooth devices and the input
(text messages and keystrokes) from those devices. From
the point of view of the Target Application, these
simulated devices behave the same way as the real ones.

V. DIABLU CLIENT

The DiABlu Client is a mobile application developed in
Java ME for devices that support the MID profile plus the
Bluetooth Java API (JSR-82) [7]. This application allows
the handheld user to interact with the Target Application
via the DiABlu Server.

The DiABlu Client is a general application, in the sense
that it is independent of the Target Application. The
application is the same for every Target Application; there
is no way to customize it, at this moment. Basically, it
allows the user to:
• Discover nearby DiABlu Servers and connect to

one. This makes it possible for the user to choose to
interact with one from a number of nearby
installations.

• Send a text messages to the Target Application.
• Send keystrokes to the Target Application.

Figure 3 shows the screen diagram for the DiABlu Client
application.

There are three main screens in the DiABlu Client
Application: the Search Screen, the Msg Screen and the
Keys Screen.

Figure 3 – Screen flow diagram for the DiABlu Client

The Search Screen is a waiting screen so that the
DiABlu Servers can be discovered. To discover a DiABlu
Server, the DiABlu Client first searches for Computer
class devices. For all Computer devices, the application
searches for a specific service UUID. If this service is

found, then the device has a DiABLu server running. The
services names (set by the user in the DiABlu Server
interface) are shown to the user in the Msg Screen.

The Msg Screen allows the user to send a text message
to one of the DiABlu Servers discovered. The user can
choose to which DiABlu Server to send the message (if
there are more then one).

The Keys Screen allows the user to send keystrokes to
the DiABlu Server.

VI. TARGET APPLICATION

The Target Application is any application, developed by
the final user of the DiABlu System, that is capable of
receiving data via the OSC protocol. The Target
Application receives updated information about the names,
IDs and number of bluetooth devices near the computer
running the DiABlu Server. It also receives the key codes
that a given DiABlu Client's user pressed while connected
to the DiABlu System.

A. Usage Scenarios

 There are three typical high-level use cases for the
DiABlu System:

No Interaction: In this use case, the Target Application
only needs to know how many devices there are in the
vicinity and/or their names.

The installation does not have any direct interaction
capability; it just reacts to the presence of bluetooth
devices.

Shared Interaction: This use case represents all
applications that besides reacting to the presence of
bluetooth devices, allow their users to directly interact
with the application. Interaction is done by means of the
DiABlu Client application, which must be installed in the
device, and is limited to sending keystrokes and text
messages. There are no restrictions, imposed by the Target
Application, on the number of users that may be
interacting simultaneously with it.

Exclusive Interaction: This is similar to the Shared
Interaction use case, except that the Target Application
limits the number of users directly interacting, to one. This
is a typical use case for navigational interfaces in which at
most one user may be navigating at a time.

B. Example Target Applications

Nulltidão (No Interaction) – This is a video installation
developed by João Cordeiro [8] that plays with the
concepts of crowd and individuality. The installation uses
only the information about the number of nearby
Bluetooth devices as estimation of the number of people
watching it. The installation consists of a video-wall

displaying a video captured by a web camera installed at
the location. The video is manipulated so that it shows
only regions of the current frame combined with an initial
frame. This initial frame is taken from the location when
there are no people around. The number of regions
displayed depends on the number of devices present.

Public Puzzle (Shared Interaction) – This is a video
installation that consists of a block puzzle that users can
play with. Instead of using a still image for the puzzle, it
uses frames taken from a web camera mounted at the
location. Playing with this game is a matter of moving the
black piece up, down, left or right, trying to put the nine
pieces in the right order. Several users can play at the
same time, issuing commands to the black piece. In order
to play, users must have the DiABlu Client application
installed.

Jukebox (Exclusive Interaction) – This application
allows users to select a music file to play, just like a
physical jukebox. The application’s interface is displayed
on a video-wall in a public place. Users can install the
DiABlu Client application on their cell-phones and use it
to control the jukebox. The jukebox application guarantees
that only one user at a time can browse the music library
and choose the file to play. This is done via timeouts – if a
user starts controlling the interface, other users are not
allowed until a fixed amount of time has passed since the
last interaction.

VII. OSC MESSAGES

The following are all OSC messages implemented by
the DiABlu Server. Some of the messages are redundant,
i.e., they transmit the same information. They differ only
in the way that they must be handled by the target
application.

We chose to provide redundant messages so that the
target application programming could be facilitated.

We present the format of the OSC messages in the form
[MessageName] [Type-0]:[ParameterName-0] [Type-
1]:[ParameterName-1] (…) [Type-n]:[ParameterName-n],
where [MessageName] is the OSC Address Pattern,
[Type-x] is the OSC Type Tag String (“s” for string, “i”
for int32, “f” for float) and [ParameterName-x] is the
description of the parameter.

/DeviceIn – This message is sent for every new device
that is detected by the server. If two devices enter at the
same time, two messages will be sent. The format of the
message is: /DeviceIn s:[UUID] s:[Friendly-Name].

/DeviceListIn – This message is similar to the previous,
except that, if two, or more, devices enter at the same time,
only one message is sent. The message contains the UUID
and friendly names of all devices that entered. The format

jccardoso
Highlight

jccardoso
Highlight

of this message is: /DeviceListIn s:[UUID-0] s:[Friendly-
Name-0] s:[UUID-1] s:[Friendly-Name-1] (…) s:[UUID-
n] s:[Friendly-Name-n].

/DeviceOut – This message is sent for every device that
ceases being detected by the server. If two devices leave at
the same time, two messages will be sent. This message is
the counterpart of the /DeviceIn message. The format of
the message is: /DeviceOut s:[UUID] s:[Friendly-Name].

/DeviceListOut – This is the counterpart of
/DeviceListIn. If two, or more, devices leave at the same
time, only one message is sent. The message contains the
UUID and friendly names of all devices that left the
vicinity. The format of this message is: /DeviceListOut
s:[UUID-0] s:[Friendly-Name-0] s:[UUID-1] s:[Friendly-
Name-1] (…) s:[UUID-n] s:[Friendly-Name-n].

/MessageIn – This message is sent whenever a user
sends a text message via the DiABlu Client application.
The format is: /MessageIn s:[UUID] s:[Friendly-Name]
s:[Message-Text].

/KeyIn – This message is sent when the user presses a
key in the DiABlu Client application. This message
contains also the game action associated with the key that
was pressed, if any game action is associated. Game
actions are actions like UP, DOWN, LEFT, RIGHT,
FIRE, GAME_A, GAME_B, which different mobile
phones map to different keys. This way, applications don’t
need to have a static association between key codes and
game actions. The format of the /KeyIn message is: /KeyIn
s:[UUID] s:[Friendly-Name] s:[Key-Pressed] s:[Game-
Action]. The [Key-Pressed] parameter is a string
representing the key from the ITU-T keyboard:
“KEY_NUM0”, “KEY_NUM1”, (…), “KEY_NUM_9”,
“KEY_STAR” or “KEY_POUND”. The [Game-Action]
parameter is also a string with the name of the game action
associated with the pressed key: “UP”, “DOWN”,
“LEFT”, “RIGHT”, “FIRE”, “GAME_A”, “GAME_B” or
“NONE” if no game action is associated with that key.

/DeviceList – The /DeviceList message is sent every
time a device enters or leaves the vicinity of the server.
This message contains the list of all devices that are
currently visible by the server. The format is the
following: /DeviceList s:[UUID-0] s:[Friendly-Name-0]
s:]UUID-1] s:[Friendly-Name-1] (...) s:[UUID-n]
s:[Friendly Name-n].

/NameChanged – The /NameChanged message is sent
when the friendly name of a device changes. This message
is important because it allows devices that don’t have the
DiABlu Client application installed, to still be able to have
some basic direct interaction capabilities. The Target
Application can be programmed to react to certain friendly
names, which means that users could interact with it by
changing the name of their devices. The format of this

message is: /NameChanged s:[UUID] s:[Friendly-Name],
where [Friendly-Name] is the new friendly name of the
device identified by [UUID].

/DeviceCount – This message is sent every time a
device enters or leaves the vicinity of the server. This
message contains only the number of devices currently
visible by the server. The format is: /DeviceCount
i:[Number-Of-Devices].

Messages are sent only at the end of the Bluetooth
discovery cycle, which can last a variable amount of time,
depending on the number of nearby devices.

Allmost all messages (except for the /DeviceCount
message) have the [UUID] and [Friendly-Name]
parameters so that applications only have to maintain the
minimum state information needed. The friendly name
could be looked up be the target application, using the
UUID, but this would mean that the application would
have to maintain data arrays, which can be difficult to
program in environments like Max/MSP, Pure Data and
such.

VIII. IMPLEMENTATION STATUS

The DiABlu Server has been implemented for the
Microsoft Windows and Mac OS X platforms. We are
finishing the implementation of the DiABlu Client
application.
A. Bypassing Bluetooth Idiosyncrasies

We tested the discovery of devices by the DiABlu
server and found some Bluetooth related phenomena:

1. In some discovery cycles, some devices are not
discovered, even if they were already discovered in
a previous cycle and device hasn’t moved. This has
the effect of sending a /DeviceOut followed by a
/DeviceIn message to the Target Application even
in the case that the device hasn’t moved.

2. The friendly name is only accessible the second
time the device is discovered. This means that the
Target Application receives a /DeviceIn followed
by a /NameChanged message every time a new
device is discovered.

3. Sometimes, passing devices are detected. In these
cases, a /DeviceIn message followed immediately
by a /DeviceOut message is sent to the Target
Application.

To resolve these situations we had to adapt the server so
that two discovery cycles are needed before a device is
removed from the list. This means that it takes longer for
the Target Application to be informed of a device out
event, but we get less “false removals”.

We also changed the server so that it waits for the
friendly name to be accessible before sending a /DeviceIn
message.

We chose not to address the third phenomenon because
we believe that detecting passing devices can be an
important functionality for the Target Application.
Besides, it can easily be resolved within the Target
Application.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented the DiABlu System, a Bluetooth
detection and interaction system for the digital arts
community.

We have described the general functionality and
architecture of the system and typical use cases for this
kind of application.

We plan to use the the DiABlu System on projects
developed at the School of Arts to gain experience and
insight on the kind of functionality needed by our users in
order to further develop and enhance the system.

In the short term, we plan to add bidirectional
communication between the DiABlu Client and the Target
Application. We also plan to extend the detection range by
using the DiABlu Clients as detection nodes and

transmitting the information about the detected devices to
the DiABlu Server.

REFERENCES

[1] Infusion Systems, “I-CubeX”,
http://infusionsystems.com/catalog/index.php [accessed 06
June 2006].

[2] Macromedia,”Flash”,
 http://www.macromedia.com [accessed 06 June 2006].
[3] B. Fry and C. Reas, “Processing”, http://processing.org

[accessed 06 June 2006].
[4] Cycling74, “Max/MSP”, http://www.cycling74.com

[accessed 06 June 2006].
[5] M. Puckette, “Pure Data: another integrated computer

music environment”, Proc. the Second Intercollege
Computer Music Concerts, pp 37-41, 1996.

[6] M. Wrightand A. Freed, “OpenSound Control: A New
Protocol for Communicating with Sound Synthesizers”,
Proceedings of the 1997 International Computer Music
Conference,1997.

[7] Java Community Process, “JSR 82: JavaTM APIs for
Bluetooth”, http://www.jcp.org/en/jsr/detail?id=82
[accessed 06 June 2006]

[8] J. Cordeiro, “Nulltidão”, Multimedia Programming Course
Project, 2006,
http://teaching.jorgecardoso.org/pm/ [accessed 06 June
2006].

